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Abs.tr act 

A mathematical model of a simplified atmosphere is described 

which is suitable for considering certain processes of heat exchange. 

The model is set up for an alnost incompressible atmosphere, that 

is, the variations in densjty are neglected except in the term 

representing gravitational force.  Only the dynamics, not the thermo- 

dynamics, of the problem is considered. The resulting equations of 

motion are simplified by perturbation methods regarding the ratio 

of atmospheric thickness to the radius of the earth as the perturb- 

ation parameter.  Given a density distribution in the atmosphere as 

an arbitrary function of latitude and height, the model determines 

the zonal velocity component and the meridional circulation. A 

simple numerical example is given to illustrate the type of flow to 

be expected fro-: the model. 
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1.  Intjodjuctiqn 

Although much effort has been devoied to constructing 

mathematical and iicchanical r.odels of the atmosphere with the aim 

of explaining the general features of the atmospheric circulation, 

there is at present no satisfactory manner of linking the observed 

behavior of the atmosphere to the fundamental sources of energy- 

responsible for that behavior. The ultimate source of energy for 

atmospheric circulation must be solar radiation.  The motion in the 

atmosphere derives its energy from the unequal distribution of heat 

produced by the different races at which heat energy is absorbed 

from and radiated into outer space at different parts of the atmos- 

phere. The motion in turn furnishes processes of heat exchange 

which tend to produce a uniforr: distribution of heat. 

The circulation is observe'1, to be near a quasi-equilibrium 

state at all times so that large surpluses or deficits of heat 

energy in the atmosphere do not occur. There are, however, signif- 
t 

icant departures of the circulation from the mean state which do not 

seem to depend unon a particular distribution of heat energy in the 

atmosphere but rather suggest a dyna-.lc instability of the basic 

zonal circulation in at least some of its modes. 

The problem of the stability of zonal flow is of great im- 

portance and has received a good deal of attention in the past few 

years. Kuo (1950), for exanple, has considered the stability problem 

in considerable detail and has discussed a possible role which 
I   • 

stability plays in maintaining and regulating the general circulation, 
is 

Studies of the stability problem, however, do not give very much in- 

sight into how the general circulation is maintained since the 



I conversion of heat .Into kinetic and potential energy is not con- 

sidered. 

Much of the difficult-/ in constructing a theory of the 

I general circulation Is encountered in choosing a sir.pie, meaningful 

Rodel in which the thermodynamics of the atmosphere may be included. 

The mathematical models whic'i have been developed for the study of 

dynamic stability of zonal circulation are not suitable for the 

thermodynamic problem because most of them either do not explicitly 
It 

include the effects of vertical structure in the atniospnere or are 

applicable only when the thermodynamic processes are negligible. 
I 

The classical Hadley model is l^ore suitable but Is difficult to 
I 

construct mathematically. 

In the classical Hadley model it can be shown by qualitative 

reasoning that at least three meridional circulation cells must 
II 

exist to correspond apprcx?' atciy to the observed zonal winds. The 

subtropic and arctic cells are driven thermally while the middle 

cell is driven indirectly by the other two cells through lateral 

friction. The arguments leading to this picture of the circulation 

consisting of three cells and the dynamics of the middle cell have 

been given by Rossby. A semi-empirical model of a three cell type 

has been constructed by Dorodnitsyn, Izvekov, and Schwetz (1939) 

from the observed temperature distribution in the atmosphere and 

the surface pressure distribution, using a method developed by 

Kochin (1935). Rossby (19*+D gave an excellent discussion of the 

Hadley model and pointed out some of the difficulties encountered 

in attempting to explain certain features of the circulation with 

this model. 
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A model of a simplified atmosphere is constructed here in 

order V at scne processes of heat exchange car. b-i  studied analytical- 

ly,  The purpose of this model i.-; to ^ive the distribution of zonal 

and meridional velocity components corresponding tc a given density 

field and representing a balance of pressure-gradient, Coriolis, 

gravitational, and frictional forces.  Assuming the density field 

to be known, the velocity field is determined.  Using the energy 

equation and the equation of state, the distribution of heat sources 

and sinks necessary to maintain the particular density field in the 

steady state can he calculated.  "he thermodynamics of the model 

can be considered as a separate problem and, therefore, is net taken 

up in detail here. 

2.  Simplifying Assumptions 

The equations of mass end momentum conservation serve as the 

basis for the model considered in the following analysis.  It is 

necessary to make simplifying assumptions at the outset in order 

to obtain a model sufficiently simple for analytical treatment. 

The atmosphere is considered to be an almost incompressible 

•        fluid covering a smooth earth to a mean depth h v/hich is very small 

in comparison with the earth' s mean radius a ,  The motion of the 

atmosphere is considered in the steady state and is assumed to be 

driven by a known density distribution.  It is assumed that the 

density variations are small enough to be sufficiently accurately 

represented in their effect on the fluid motion by considering a 

variable gravitational force. Frictional forces are assumed to 

arise from Reynolds stresses and are ta)"en into account by introducing 
i 
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a constant, isotrcpic kinematic eddy viscosity.  In adopting an 

eddy viscosity, it is irplieitly assunri that t/.c steed" .-notions 

arc arrived at bv an. averting proces".. The non-linear terms arc 

neglected to siir.rlify the mathematical analysis so tnnt conclusions 

based on this model would be valid only v/hen these terms are rela- 

tively small. The motion is assumed to be independent of longitude 

since otherwise the motion docs not appear to have any obvious 

physical significance unless surface irregularities of the earth are 

is I*.        taken into account. 

The coordinctcs of a point in the atmosphere may be specified 

by giving the distance z of the point from the geoid measured along 

the local vertical direction, the latitude 9, and the longitude \ 

at the geoid.  It is assumed that this coordinate system can be 

sufficiently well approximated by a spherical coordinate system 

(\, 9, r) in which gravitational forces act in the radial direction. 

Here, \ is the longitude measured eastward from a reference meridian, 

9 the latitude measured from the equatorial plane'and r measured 

from the origin at the center of the earth. The radial distance r 

of a point at height z above the geoid is approximated by a + z, 

where a is the mean radius of the earth. The velocity components 

(u, v, w) are chosen so that u is the eastward component, v the 

northward conronent, and w the upward component of velocity, 

3 • Equations _of Motion 

On the basis of the assumptions above, the equations of 

motion can be written in the following form 



* 

s 

2Q [ :OJ 9 w - sin cp v ] = K[ S]
2
^  -    ^ u *-   1  (1) 

2Qsin 9 u = - -A d£ J- K[ y V - 
pr ocp 

v ±. £H ] (2) 
cp  r~ 89 

2 cos 9 u ... I U - G(9,r) + K [y2v - 2jj . ^ 9v 
p cr r 89 

+ 2 tan cp v -1 
r2 

r cos 9 
9 cos 9 v , 1 , 9r v 

99      J?  I~L 0 

(3) 

r"  9 r 

where Q is the earth's angular velocity, p is the density and is 

considered constant while j(9, r ), the unit-mass gravitational force, 

is modified to include the effects of small variations of  the density. 

The pressure is given by p, and the 'rinomatic eddy viscosity by }'. 

The Laplacian operator in tills coordinate system is 

V2 =  1 SL C cos 9 M  + -t -2- [ r2 ±   ] 
rr-cos 9 99      99   r^ 9r     9r 

A stream fraction \|> is introduced for the meridional cir- 

culation so that 

v = 
r c 

1 9J 
os 9 ^r 

M 
r cos 9 39 

(5) 

(6) 

The equations can be e;.pressed more  compactly by introducing 
0 

the quantities M, x, D , and Cr, where 

M = r cos 9 u 

x = sin 9 
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3x' 

j = xSL + (l - y'J -2. 
dr     r    9x 

a 

end M is the unit-mass relative angular momentum of the zonal flow, 

and D , G are commutative differential operators. The equations 

become 

+ 2QxiJ = 
r 

- 2 QG(\|»)  = X D2(H) 

-  (1 - x2) |2+K1 [D2nlO] 
pr        9x      r dr 

(7) 

(8) 

p p3r j? dx 
(9) 

I 

Eliminating the  pressure from  (8)  and   (9)  yields 

2QG(M) = (1 - x2) ££ + K D\\|0 ax 
(10) 

i 

The boundary conditions at the earth's surface are that 

normal and tangential velocity components are zero. At the upper 

surface the components of torque are zero. The condition of con- 

tinuity requires zero net volume transport in the steady state a- 

cross all latitude circles. In terns of V. and ^ , these boundary 

conditions become 

ib = SSt  = 0 
dr    L 

f at r = a, 

h  = 0 

i 
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4i = .a. d 
3r -i,- All 

r<   9r 

3r 
" M 1 _7J 

;tt r = a + h, 

0 

1 
| 

The mathematical problem is specified once g is given as 

a function of x and r. 

h.  Dimensional Analysis 

Unfortunately, it is difficult to solve equations (7) and 

(10) regardlers of the choice of g. Further simplification of the 

equations is achieved by dimensional analysis.  The equations are 

converted into non-dime.nnicnal form by introducing the non-dimen- 

sional quantities a , z', M1 , v}1' , g1, and p', where 

aQ = h/a 

z1 = z/h or r = a (1 + aQz' ) 

M' = M/aU 

\J>' = \J)/P 

g' = s/?> 

P1 = p/pg h 

and U, *P, g are characteristic values of the zonal velocity component, 

stream function, and gravity respectively. 

By choosing 

<P = K* AQ ~ 

U = aQ/7 /2Q 

e = K/2 Q h2 
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equations (7) and (10) o-.n be written in the following non-dimen- 

sional form, the primes now '--eing omitted 

- :':(4) - T^C;;) 

G(h) = (1 - x2) |£ + e2Df(*) 

(3D 

(12) 

where  the differential  onerators   in non-dimensional  form are 

D    = -1— + a 
~        o 

-    (l - x2)   a2 

dz' (1 + o.-z)     ax' 

a 
az 

PL a - x2) A 
^ TTT^TzT ax 

The order of magnitude of the various terms can be estir.-rted 

by choosing representative values of the dimensional constants. For 

example, the values 

a = 6371 km 

h = 10 Ian 

K = ic5 2       -1 cm sec x 

g = 103 p 
cm sec 

P = 10-3 g cm"3 

Q = 7.3xlO"5 sec"-1- 

yield the following characteristic constants 

u    = 110    m sec 

<p   = 5x10°    nrsec 

ao = 0.0016 

e    = C.C007 
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5. Ferturbation Equations 

The inver.ti?i?.tton of equations (11) and (1?) can be simpli- 

fied considerably by regarding a as a perturbation parameter and 

expanding the solutions and the differential equation as perturba- 

tion series in ao. 

The functions M, ab, and g are expanded as power series in 

ao 

f! » ; o + ao Ml + »o M2 +  

* « \|»0 + a0 ^ • aQ ^2 +  

2 
g = 20 + a0 g]L + aQ g2 •  

These series are substituted into equations (11) and (12) and all 

terms are collected as coefficients of terms in a power series in 

a .  Considering a as an arbitrary parameter, the power series can 

have a sum function identically zero only if all the coefficients 

of powers of a are zero. This condition leads to an infinite set 

of differential equations for M. and i|> .  In the following analysis 

only the equations corresponding to the zero and first order terms 

in a are considered. 

The equations of zero-order in aQ  are 

e
2 **2-x.2!° = - (1 -x2)i£2 (13) 

dz      9z 6x 

1%+     X*t°  =0 (11*) 
dz2 dz 

with the boundary conditions 
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*0 - atj»0/az = o 
^    at z - 0, 

:i0   *   C 

^o  =  a"Vaz2   =  ° 

3MQ/3z = 0 j 

at  z - 1, 

The equations of  first-order  in aQ are 

E2 *k . „ !Hi . . (1 - x
2 

dz* dz 

32M. 

9Mo + 
a*l 

a?/-    a- ax 

(15) 

(16) 

! 

with the boundary conditions 

T|,1 = ty /dz  = o] 
I at z = 0, 

!»'! = oj 

and ^ = o, e^/az" = 2 a^0/az' 

> 
at z = 1. 

3MX/ 3z = 2M0     j 

The perturbation equations for the pressure can be obtained 

in a similar manner from equations (8) and (9) after converting them 

into non-dimensional form. 

5o 
~3z = - Zi 

(1 - 
JP, 

x > "fiT = - xM„ + e' 
a3^o 
3z- 

(17) 

(18) 
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'1-o - 81 

(I - x'-) 
ep1 
"ST = - X 

2 &*\h ;,  +  £<-  _i 
8ZJ 

(19) 

(20) 

6. Solutions jof .the.Zero-order, fija.uatIons. 

Solutions to the zero-order equations can be obtained in 

closed form for the special case that 9g0/dx is a .function of x 

only; so for the purposes of studying sinrole flows predicted by the 

present model, this special case is considered in detail,  "he more 

general case where 6g0/9x is a function of both z and x can be 

solved in terms of an integral over a Green's function or by bound- 

ary-layer methods. 

The solutions to the zero-orde" equations may bo written 

in the form 

where 

40 = - .CL- xtl***  0 (Z,k) 
x^    9x 

o     x   ox      ' 

0(z,k) = 1 - T.    A* exp (\,z) 
3=1 J     J 

* (z,!0 = /  0<i,k) d-c 

(21) 

(22) 

(23) 

(2»f) 
co 

and X, (j = 1,2,3,^), represent the four roots of the equation 

V? = - x2/e2 = - k  k\ 
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The roots are 

X1 = - k(l - i) 

where 

w2 = - k(l + * \ 

1/2 

X = + k(l 4 i) 

\  = + k(l - i) 

i = (-1) 1/2 

L 

The function 0(z,k) can be found by solving the four 

simultaneous algebraic equations arising from the boundary condi- 

tions for the coefficients A... The function is found to be 

0(z,k) = 1 - ,—--,———£—.—-_ 7 I  [cos k cosh k(l-z) sin kz 
I sinh 2k - sin 2k I 

- cosh k sinh kz cos k (1-z)] 

+ [cosh k cos k - sinh k sin k ] [ cosh k(l-z) sin k(l-z) 1 

1-z) 1J 
(2?) 

- [cosh k cos k + sinh !: sin k ] [ sinh k(l-z) cos k(: 

I 

There are two cases for which this expression is closely approximated 

by a much simpler form: 

Case I.  k> 5 

0(z,k)~l - (2)'^ exp(-kz) cos (kz ~nA) - e;:p(-k(l-z)) cos k(l-z) 

Case II. k<l 

0(z,k) - (kz) (l-z)Q-2z) 



-13- 

Frcfiles of ®(z.k)  and 0(z,k) rre given for soveral values of k in 

fig. 1 and fig. ?  respectively. 

The zero-order pressure distribution can be calculated from 

equations (17) and (10).  If 9g0/3x is a function of x only, 

g (z,x) nay bo written as 

g0(z,x) = gol(z) + go2(x) 

and from equation (17), the pressure p , as 

p0(z,x) = Pol(z) + go2M  Cl + n(x) - z ] (26) 

The equation for T)(X) IS obtained by substituting from (21), (22) 

and (26), the expressions for ^0, MQ, and pQ respectively, into 

equation (18). The resulting equation is 

Qgo2n 
a^— 

9g 
aT 

o2 1    - cosh 2k + cos ?k - 2 cosh k cos h; 
k(sinh 2k - sin 2k) 

(27) 

! 

The boundary condition for n(x) is 

1 

J rj(x) dx = 0. 

The function rj(x) represents the departure of the upper surface 

from the surface z = 1 necessary to bring the pressure-gradient 

forces into equilibrium with Coriolis and frictional forces. 

The horizontal pressure gradient can be expressed as follows 

8P 
-5T * "I Cgo2(i* n- 2)1 

[ ^02 
ax 

cosh 2k + cos 2k 
k (sinh 2k 

2 cosh k cos k 
sin 2k) - z (28) 
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It is clear that the horizontal comr.onont of the pressure gradient 

must change sign in the lowei' frictional layer and will be zero 

along the surface 

z  = cosh ?k + cos 2k - 2 cosh k cos k (29) 
v (Sinh 2k - sin 2k) 

for any choice of 9gQ/9x which depends only on x. Along this sur- 

face the Coriolis and frictional forces are of equal magnitude. 

?•  Surface Torque 

It is of interest to note that equation (iS)  can be integrated 

with respect to z directly. The resulting equation is 

92° + ^o = ° (30) 

This implies that the meridional transport at a given latitude is 

directly proportional to the vertical gradient of the zonal angular 

momentum. Since 8MQ/az is also proportional to the torque exerted 

by the zonal flow, equation (30) may be interpreted to mean that the 

volume transport per unit time in the meridional direction below a 

certain height is proportional to the torque exerted by the zonal 

flow above that height. Since there is no volume transport below 

the surface z = 0, the zonal flow given by the zero-order equations 

cannot exert any torque on the earth's surface in the steady state. 

The solutions to the first-order equations can be obtained 

in terms of a Green's function, but as these solutions cannot be 

expressed in the sir-pie form found from the zoro-order solutions, 

they are not considered in detail here. However, it is possible 
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to draw some conclusions about the torque on the earth.' s surface 

from the first-order differential equations.  Integrating equation 

(16) with respect to z throughout the atmosphere ^ives the result 

that the surface torque must be 

Te = - -a- 
s    3x 

(1 - x2) M ' 
X 

~iz = 1 
<31> 

Since M (l,x) is zero at the noles and at the equator, the torque 

must change si^n in the interval 0 < |x | <1. This, in turn implies 

that the zonal flow must reverse itself in some region between the 

poles and the equator. As this reversal of the zonal flow is con- 

tributed by the first-order equations, and consequently is small 

relative to the zero-order torms, the region of reversal will not 

extend beyond the lower layer of frictional influence. 

8. A. Simple Numerical Sxampjle 

Most of the features of this model can be illustrated by 

considering a numerical example in which 3g0/6x is assumed to be a 

simple polynomial in x. Since g0 is functionally dependent on 

density in the approximation adopted in this model, assuming ag0/8x 

to be known is equivalent to assuming the distribution of the hori- 

zontal density gradient throughout the atmosphere to be known. The 

density gradient is chosen to be anti-symmetrical about the equator, 

to vanish at poles, and to be proportional to 

j|2 = px3(l - x2) (32) 



-16- 

The effects of friction are measured by the dimensionless constant 

e, which in this example is chosen to hove the value e = lO"-5 to 

simplify numerical calculations. 

"'he corresponding zero-order solutions are 

^0 = - px(l - x2)2 0(z,k) (33) 

M0 = p3r(l - x2)2 *(z,k) (3^) 

g0 = f(z) 4 ^ xk(3  - 2x2) v35> 

where p is a dimensionless constant, and f(z) is an arbitrary func- 

tion of z. 

Meridional cross-sections have been drawn shoving isotachs 

of the zonal velocity component in figure 3» and streamlines of 

the meridional circulation in figure *+, The normalisation factor 

for the zonal velocity component is umax = 19t0 {3 m sec"1, and for 

the stream function, «P = 6.85xlCr 0 ra^sec**1. Tho maximum values of 

the velocity components obtained in the numerical example aro» 

"max • 1C"°  P m soc~l 

v„_ = 0.59 0 m sec  in tho.upper friotional layor 

vmax = °»38 P m sec"1 in the lower frictional layer 

wmax s °»00ll+ P m sec . 

9. Discussion 

The simple example of zonal and meridional flow given above 

illustrates the type of flow to be expected from this modol. The 



flow pattern is essentially different from the flew to ce expected 

on the basis of the classical Hadley model since the transport of 

relative angular rovc-ntum by the meridional circulation is not 

taken .into account. The easterly v/inds near the equator predicted 

by the model pre not due to horizontal meridional currents as sug- 

jested by the Hadley model but arc due tc a net vertical motion 

throughout the atmosphere in the equatorial regions. The easterly 

1       winds have an appreciable horizontal extent only in the case that 

meridional density gradients are very small in the equatorial regions. 

Thus, a density gradient varying as x or x in the vicinity of the 

equator would require very strong east winds within 2 or 3 degrees 
I 

of the equator.  Since the derivation of the perturbation equations 

implicitly assumes that no such rapid changes in velocity occur, 

the density gradient in the example treated above is chosen to vary 

as x^ near the equator. 

The example given above is not intended to resemble the 

actual circulation in the atmosphere.  It would not be difficult 

to choose a density distribution which would give a more realistic 

zonal velocity profile; however, such a choice could not be justi- 
I 

fled from the dynamics of the model alone and would require the 

investigation of the thermodynamic  processes associated with the 

notion for its justification. 

10. Plans for Future Work 

The basic purpose of pursuing this analysis was to construct 

a model in which heat exchanges could Vie considered analytically. 

n i 
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The model described here is considered as the first approximation 

to a more realistic model and would have to be generalised accord- 

ing to the problem under consideration. Many generalisations can 

be suggested; for example,, it may be necessary to take into account 

the compressibility of the atmosphere before significant therrao- 

dynamic processes can be considered.  Also the effects of lateral 

stresses can be taken into account by considering a nonisotropic 

eddy viscosity.  Both of these generalizations make the mathematics 

of the model more complicated but, it is hoped, not impractical. 

The effects of the non-linear terras would have to be considered 

seriously as they are not always relatively small and may invalidate 

conclusions made from the linear models.  It is not proposed to 

study models with longitudinal dependence because in such models 

time dependent terms would have to bo considered and the analysis 

would be much more complicated. 

The immediate plan is to apply this model to the investiga- 

tion of the dynamics and thermodynamics of the Antarctic Circum- 

polar Current because only minor changes of the present model are 

necessary in applying it to the ocean.  In particular it would be 

necessary to compute the solutions to tho zero-order equations cor- 

responding to a given distribution of surface torque exerted by the 

prevailing winds. 
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Fig. 1. The   function $(z,k), defined hv eq. (25), 
is plotted for several values of k. For the numeric- 
al example discussed, this function is proportional 
to the zonal velocity component along a vertical 
line through the atmosphere. 

II 

Plf. 2.  The function #(s,lc), defined by eq. (26), 
ia plotted for several values of k. For the numeric- 
al example discussed, this function Is proportional 
to the stream function of the meridional circulation 
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_«_ i. 
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rig.  i.    A meridional  cross-section shoving laotachs  of  the sonal velocity 
component   (solid lines) normalised  to unit msjtl.n»un speed st s • 1     The BUT 
face along which the horlsontal pressure gradient vanishes   Is narked b» « 
broken line.  The hatched region  Indicates   the horizontal extant «r  »k. .... 
erly winds  as plven by the first-order stations. *"' °f th* 8"t- 
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Mg. U.    A meridional cross-section showing atfMiallnM of ^ „.,•!,!!onAl 
slrculatlon normalised to unit maxlnua value of %h« stream function st t - O.t. 
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